
Chapter 12

Empirical Analysis of the Stack Overflow
Tags Network

Christos Iraklis Tsatsoulis

Nodalpoint Systems, Athens, Greece

12.1 Introduction . 265
12.2 Data Acquisition and Summary Statistics . 267
12.3 Full Graph — Construction and Limited Analysis . 268

Clusters and Connected Components . 269
Node Degrees . 270
Clustering Coefficient, Path Length, and Small-world Characteristics 271

12.4 Reduced Graph — Construction and Macroscopic Analysis 272
General Statistics . 272

12.5 Node Importance: Centrality Measures . 273
Betweenness Centrality . 273
Closeness Centrality . 275
Eigenvector-based Centrality . 276

12.6 Community Detection . 277
Fast Greedy Algorithm . 277
Infomap Algorithm . 279

12.7 Visualization . 282
Visualizing the Communities Graph . 283
Egocentric Visualizations . 284

12.8 Discussion . 285
12.9 Appendix: Data Acquisition & Parsing . 290

Data Acquisition . 290
Parsing the Tag List & Frequencies . 290
Parsing the Tag Co-occurences . 291
Building the Adjacency Matrix . 291

12.9 Bibliography . 292

12.1 Introduction

Stack Exchange is self-described as “a fast-growing network of 129 question and answer
sites on diverse topics from software programming to cooking to photography and gaming”,
with a current base of more than 5.5 million users and over 82 million monthly unique
visitors1. By far, the greatest among these 129 sites is Stack Overflow, devoted to questions
about computer programming and related topics.

1http://stackexchange.com/.

265

266 Step C (Figure 1.40):

Question tags are an essential part of the submitted questions in Stack Overflow, allow-
ing answering users to monitor questions relevant to their field of expertise and to answer
promptly to submitted questions. Only users holding an “advanced” status in Stack Over-
flow are allowed to generate new tags, with the rest of the community limiting themselves
in using the existing tags for their questions. Tagging the submitted questions is mandatory
(i.e., there is a minimum of one tag per question), and each question can contain up to five
tags.

In this chapter, we depart slightly from text analysis proper in order to undertake a task
inspired by the recent advances in what is usually termed as “network science” : hence, we
carry out an analysis of the Stack Overflow tags viewed as a network, or a graph. Specifically,
we aim to get some insight about the user communities by representing tags and their co-
occurrences as a graph, where the graph nodes are the tags themselves, and an edge between
two nodes exists if the corresponding tags are found together in the same Stack Overflow
question. The resulting network edges are weighted, i.e., the more questions exist with two
tags co-occurring, the higher the weight of the relevant edge between them will be; for
example, if the tag python is found to co-exist with the tag android in 500 questions,
the weight of the edge between the nodes python and android in our graph will be 500.
In graph terminology, the resulting graph is a weighted undirected one.

What is the motivation behind our approach? The recent development of network science
[1], largely triggered by the publication of two seminal papers in the late ’90s [2, 3], has since
made clear that the graph representation of data and processes is certainly of benefit, and
can lead to insights not directly or easily achievable otherwise. Our scope is to demonstrate
the merit of such a representation in a text-related area and to possibly alert the interested
reader for the availability of the relevant principles, tools, and techniques.

There are several introductory textbooks available on network science: Easley and Klein-
berg [4] aim for an advanced undergraduate audience and have made their book freely
available online;2 the books by Jackson [5] and Newman [6] are standard graduate-level
introductions to the subject, from the perspectives of economics and statistical physics re-
spectively; Kolaczyk [7] provides another graduate-level introduction, with emphasis to the
statistical analysis of network data; and Barabási [1] is gradually making available an online
introductory book as a work in progress. We also highly recommend the popular book by
Duncan Watts [8] for a smooth, non-mathematical introduction to the relevant concepts,
notions, and ideas. We will not provide here a formal introduction to graph theory and
network science, something that would require a separate chapter by itself; instead, we will
introduce rather informally and intuitively the relevant concepts as we go along. For for-
mal definitions, the interested reader can always consult some of the free online resources
mentioned above. For the purposes of our discussion, we will use the terms “network” and
“graph” loosely and interchangeably, as if they were synonyms (although they are not). The
other interchangeable pairs of terms we will use are “node” – “vertex” and “edge” – “link”.

We have chosen R [9] for our investigation, as it has become the de facto standard tool
for the statistical analysis of data. Among the several available packages for graph and
network analysis, we utilize the igraph library [10], a powerful and flexible tool which is
already used by at least a hundred other R packages [11].

The rest of this chapter is organized as follows: in the next section, we describe briefly the
data acquisition process and present some summary statistics of the raw data; in Section
3 we expose the construction of our first graph based on the whole data set, along with
some limited analysis; Section 4 describes the meaningful reduction of our raw data set,
which is used in the rest of the chapter; Section 5 deals with various measures of node
importance (centrality), and Section 6 we demonstrate the application of some community

2http://www.cs.cornell.edu/home/kleinber/networks-book/.

Empirical Analysis of the Stack Overflow Tags Network 267

Number of records (questions) 7,214,697

Number of unique tags 36,942

No. of tag occurrences 21,294,348

Average no. of tags/question 2.95

TABLE 12.1: Statistics of raw data.

detection algorithms; some attempted visualizations are presented in Section 7, utilizing
the communities detected in Section 6; Section 8 concludes the chapter with some general
discussion.

12.2 Data Acquisition and Summary Statistics

Stack Exchange makes its updated “data dump” periodically available roughly twice a
year (January & September), under a Creative Commons BY-SA 3.0 License.3 The version
we are going to work with is of January 2014. The questions data are available as a large (˜
25GB) XML file, which was downloaded and parsed using BaseX, an open-source lightweight
XML database4. A separate XML file with the tag frequencies is also provided. The details
of the raw data parsing and processing can be found in the Appendix; the results are:

� A list of the used tags, ordered by decreasing frequency

� An adjacency matrix keeping track of the tag co-occurrences, as described in the
Introduction.

These results are available as R workspace files (tag freq.RData and adj matrix.RData
respectively) from the author’s Github repository5, and they constitute the departure point
for our analysis; as said, readers interested in the parsing procedure itself and the construc-
tion of these results from the raw data can consult the Appendix; the R scripts used for the
parsing are also available at Github, so the whole procedure is entirely reproducible, and
even extensible as new versions of the Stack Overflow data dump become available in the
future. The summary statistics of the raw data are shown in Table 12.1.

The tag freq dataframe contains two variables: the name of the tag and the corre-
sponding frequency (counts) in the data set. We will load it and add a third variable, to
indicate the relative percentage frequency of each tag, and then view the 10 most frequent
tags:

> load("tag_freq.RData") # needs to be in the current working directory
> tag_freq$rel <- tag_freq$freq/sum(tag_freq$freq)*100
> head(tag_freq,10)

tag freq rel
1 c# 635338 2.983599
2 java 632575 2.970624
3 javascript 605552 2.843722
4 php 573279 2.692165

3http://blog.stackexchange.com/category/cc-wiki-dump/.
4http://basex.org/.
5https://github.com/desertnaut.

268 Step C (Figure 1.40):

5 android 503255 2.363327
6 jquery 468723 2.201162
7 python 297952 1.399207
8 c++ 287483 1.350044
9 html 284234 1.334786
10 mysql 243701 1.144440

We can thus see the 10 most frequent tags, along with their absolute and relevant
frequencies. Going a little further,

> sum(tag_freq$rel[1:10])
[1] 21.28307

we can easily see that the 10 most frequent tags account for about 21% of all tag occurrences
in the raw data.

We can similarly explore the other end of the list, that is how many tags appear very
infrequently in the data set:

> length(which(tag_freq$freq < 100))
[1] 26723
> length(which(tag_freq$freq < 10))
[1] 9614

We can thus see that the majority of our 36,942 tags appear fewer than 100 times,
whereas about 26% of the tags have a rather negligible presence (fewer than 10 times) in
our data.

These results suggest a highly skewed distribution, with relatively few frequent tags
dominating the data set. Plotting the tag frequencies for the first 100 tags (recall that tags
are indexed in decreasing frequency) confirms this intuition, as shown in Figure 12.1 :

> plot(tag_freq$freq, xlim=c(1,100),
+ xlab="Tag index", ylab="Frequency (counts)")

12.3 Full Graph — Construction and Limited Analysis

Having performed the initial exploration of our tag frequency distribution, we now pro-
ceed to construct the full graph using the adjacency matrix already built as shown in
Appendix A (file adj matrix.RData). The igraph library, from version 0.5.1 on, uti-
lizes fully the sparse matrix infrastructure provided by the Matrix package [12], something
extremely convenient, since working with dense matrices of size 40,000 x 40,000 can be
really cumbersome for most common desktop computers.

> library(Matrix)
> library(igraph)
> load("adj_matrix.RData") # contains sparse matrix G
> g <- graph.adjacency(G, weighted=TRUE, mode=c("plus"), diag=FALSE)
> summary(g)
IGRAPH U-W- 36942 2699465 --
attr: weight (e/n)

Empirical Analysis of the Stack Overflow Tags Network 269

FIGURE 12.1: Tag frequency distribution for the first 100 tags.

The summary() function provides some general information about the graph g, namely,
that it is undirected (’U’) and weighted (’W’), with 36,942 vertices (nodes) and about 2.7
million edges, and only one attribute (weight), which refers to the edges (’e’) and it is a
numeric one (’n’). We can decorate the graph with more attributes, such as a name for it
as well as names for each vertex (tag):

> # set the graph and vertices name attributes:
> g$name <- "FULL TAG GRAPH"
> V(g)$name <- tag_freq$tag # set tags as node names
> summary(g)
IGRAPH UNW- 36942 2699465 -- FULL TAG GRAPH
attr: name (g/c), name (v/c), weight (e/n)

We can see that our graph is now named (’N’), and it contains two more character
attributes (’c’), one for the whole graph (’g’) and one for the individual vertices (’v’).

Clusters and Connected Components

One of the first things in network diagnostics is to check if the network is globally
connected:

> is.connected(g)
[1] FALSE

Since our graph is not globally connected, the next step is to check for its connected
components (clusters):

> cl <- clusters(g)
> str(cl)

270 Step C (Figure 1.40):

List of 3
$ membership: num [1:36942] 1 1 1 1 1 1 1 1 1 1 ...
$ csize : num [1:53] 36888 1 1 1 1 ...
$ no : int 53
> cl$csize
[1] 36888 1 1 1 1 2 1 1
[9] 1 1 1 1 1 1 1 1
[17] 1 1 1 1 1 1 1 1
[25] 1 1 1 1 1 1 1 1
[33] 2 1 1 1 1 1 1 1
[41] 1 1 1 1 1 1 1 1
[49] 1 1 1 1 1

From the csize attribute of our clusters variable, it is apparent that our graph consists
of one giant connected component (36,888 nodes) and 52 clusters with only one to two
nodes each. It is trivial to write a short loop, in order to check the tag names in these small
isolated clusters (only the first 10 shown here, for brevity):

print isolated tags ("graph periphery")
l <- cl$no # number of clusters
for (i in 2:l) {

label <- V(g)$name[which(cl$membership==i)]
print(label)

}

[1] "untagged"
[1] "beaker-testing"
[1] "arden-syntax"
[1] "zzt-oop"
[1] "ontopia" "tolog"
[1] "ebuild"
[1] "nikeplus-api"
[1] "infinity.js"
[1] "jquery-ias"
[1] "paperless"

Even without specific domain knowledge, it is apparent that all the tags in the “graph pe-
riphery” listed already are far from common terms expected to be found in a programming-
related forum.

Node Degrees

The degree of a node is simply the number of its direct neighbors, or equivalently the
number of the links in which the node is involved [5, 6]. The degree is very frequently used
as a proxy for the importance or the significance of individual nodes in a graph. igraph
provides a relevant function degree(g), which can be used to compute the degrees of all
the nodes in the graph g; nevertheless, it is of no use in our case here, as it does not take into
account the weights of the graph edges. The correct igraph function for the computation
of the weighted degree [13] is graph.strength(g). Again, it is straightforward to see the
nodes with the highest weighted degrees in our graph:

> s <- graph.strength(g)
> V(g)$name[which.max(s)]
[1] "c#"
> s <- sort(s, decreasing=TRUE)

Empirical Analysis of the Stack Overflow Tags Network 271

> s <- as.data.frame(s) # for better display
> head(s, 10)

s
c# 1485191
java 1446078
javascript 1359147
php 1192764
jquery 1034841
android 965297
html 705233
c++ 639678
ios 621107
python 608211

Not unsurprisingly, the above list is similar (but not identical) to the 10 most frequent
tags already shown. If we plot the weighted degree, the results are qualitatively very similar
with Figure 12.1 (not shown).

Clustering Coefficient, Path Length, and Small-world Characteristics

The local clustering coefficient of a node is the fraction of its direct neighbors that
are themselves direct neighbors (i.e., directly connected); in a social network framework,
for example, it would be the fraction of one’s friends that are also friends themselves [4].
The average clustering coefficient of the whole graph is simply the average of the nodes’
local clustering coefficients [5]. By definition, both coefficients lie between 0 and 1. igraph
provides the function transitivity() for the computation of these quantities, as well
as a simple function for the computation of the average path length in a graph. For these
calculations, we ignore the edge weights, treating the edges between nodes simply as binary
entities (present/absent):

Clustering coef & average path length
Use type="average" argument for average cluster coef
> cc <- transitivity(g, type="average", isolates="zero")
> cc
[1] 0.6099061
> path.length <- average.path.length(g, unconnected=TRUE)
> path.length
[1] 2.341709

Thus, on average, the “distance” between any two nodes in our graph is between 2 and 3
hops, making our graph a small-world network [4, 5, 6]. Before commenting on the clustering
coefficient, we take a moment to compute the same quantities for a random (Erdös-Renyi -
ER) graph with the same number of nodes and edges:

Compare with an equivalent random (ER) graph
> set.seed(42) # for reproducibility
> g.ER <- erdos.renyi.game(length(V(g)), length(E(g)), type="gnm")
> cc.ER <- transitivity(g.ER, type="average", isolates="zero")
> cc.ER
[1] 0.00395176
> path.length.ER <- average.path.length(g.ER, unconnected=TRUE)
> path.length.ER
[1] 2.554753

We can see that, compared with a random graph with the same number of nodes and
edges, our graph possesses roughly the same average path length between two nodes, with a

272 Step C (Figure 1.40):

hugely higher (two orders of magnitude) clustering coefficient. This is a recurrent motif for
several real-world networks, including social ones [6], first captured in an abstract network
model by Watts and Strogatz in a seminal paper published in Nature [2], that partially
triggered the subsequent birth of the whole network science field.

12.4 Reduced Graph — Construction and Macroscopic Analysis

We have presented some general analysis for our full graph, but the information revealed
so far is rather trivial. To go deeper, we will need to revert to a reduced graph, due to the
prohibitively high computational power demanded for the analysis of the full tag graph; due
to the highly skewed distribution of the tag occurrences (see Section 12.2), we claim that
this reduction still captures almost all of the interesting characteristics of our data set.

We suggest that we proceed with a graph containing only those tags which occur a
minimum of 500 times in our data (recall that we have more than 7 million questions
and 21 million tag occurrences in total; see Table 12.1). We have taken special care when
building our adjacency matrix, so that its columns and rows extend in a decreasing tag
frequency; hence, it is a trivial operation to discard the following tags a given frequency in
the adjacency matrix:

> # select only tags with freq >= 500
> ind <- which(tag_freq$freq >= 500)
> max(ind)
[1] 3711
> tag_freq <- tag_freq[ind,]
> sum(tag_freq$freq)
[1] 19166670
> sum(tag_freq$rel)
[1] 90.00825
> # keep only these entries in the adjacency matrix
> G <- G[1:max(ind), 1:max(ind)]

There are thus 3711 tags in our reduced list, or about 10% of all tags used; the sum()
functions in the code above show that our reduced tag list contains more than 19 million
tag occurrences out of the 21 million in total, i.e., about 90%. Proceeding with a manner
absolutely similar to the one presented for the full graph in Section 12.3, we end up with
our reduced graph gr, containing about 1 million edges:

> summary(gr)
IGRAPH UNW- 3711 1033957 -- REDUCED TAG GRAPH
attr: name (g/c), name (v/c), weight (e/n)

We have thus now a much more “lightweight” graph, nevertheless capturing the vast
majority of the most frequently used tags. We are ready now to apply some more sophisti-
cated techniques from the toolbox of graph theory and network science in order to reveal
possible unexpected information and insights, hidden in the network structure.

General Statistics

> is.connected(gr)
[1] TRUE

Empirical Analysis of the Stack Overflow Tags Network 273

> cc <- transitivity(gr, type="average", isolates="zero") # clustering coef.
> cc
[1] 0.4992685
> path.length <- average.path.length(gr)
> path.length
[1] 1.849807
> # Compare with the equivalent ER graph
> set.seed(42) # for reproducibility
> gr.ER <- erdos.renyi.game(length(V(gr)), length(E(gr)), type="gnm")
> is.connected(gr.ER)
[1] TRUE
> cc.ER <- transitivity(gr.ER, type="average", isolates="zero")
> cc.ER
[1] 0.1501704
> path.length.ER <- average.path.length(gr.ER)
> path.length.ER
[1] 1.849801

We can see that our reduced graph is now globally connected (i.e., there are no isolated
nodes); it has an even lower average path length between two nodes (1-2 hops), and its
clustering coefficient is still higher than the one of the equivalent random graph, although
this difference is not as marked as with our full graph.

In what follows, we will limit the discussion to the reduced tag network we have just
constructed.

12.5 Node Importance: Centrality Measures

We recall from the previous sections that the information revealed so far is rather trivial:
taking the weighted node degree as a rough importance measure, the most important nodes
essentially coincide with the most frequent tags; clearly, we did not need to go to a graph
representation in order to discover something like that.

The graph representation starts paying off when we consider other measures of node
importance, which in the networks literature usually go under the label of centrality mea-
sures (actually, the degree centrality, which we have already demonstrated, is just one of
them). Furthermore, these measures, in contrast with the macro measures considered so
far (connected components, average clustering coefficients and path lengths), are in essence
micro measures, since they do not refer to the graph as a whole, but rather to individual
nodes and how they relate to the overall network structure [5].

There are several measures of node centrality in the literature, and most of them are
implemented in igraph. We now proceed to have a look to some of them.

Betweenness Centrality

The betweenness centrality, first proposed in the context of social network analysis by
Freeman [14], measures the extent to which a node is located in the shortest paths be-
tween other pairs of nodes (i.e., ”between” them) [5, 11]. As with other centrality mea-
sures, igraph provides two ways of calculation: the straightforward betweenness()
function, which can be computationally demanding, especially for large graphs; and the
betweenness.estimate() function, with a cutoff argument for providing the maximum

274 Step C (Figure 1.40):

path length to consider in the calculation. Although the direct calculation of betweenness
is not prohibitive for our graph, we will hereby demonstrate the usage of the approximate
function, which will most probably be of use in a range of other situations, where the graphs
are prohibitively large for the direct application of the betweenness() function. In our
case, the reader can confirm that the approximate calculation gives results identical to the
exact one. Both functions take into account the edge weights [13].

A reasonable value to use as a cutoff value for the path length is the diameter of the
graph, i.e., the maximum (shortest) path length between two nodes [5]:

calculate (approximate) betweenness
> diam <- diameter(gr)
> diam
[1] 3
> bc <- betweenness.estimate(gr, cutoff=diam)
> which.max(bc)
[1] 111
> V(gr)$name[which.max(bc)]
[1] "debugging"

Keeping always in mind that our node indices are sorted as per their occurrence fre-
quency it the data set, the meaning of the which.max(bc) above should be apparent:
the node with the highest betweenness centrality in our graph corresponds to the tag
debugging, which is ranked only 111th in our tag list.

In hindsight, it seems appropriate that the tag linking most of the questions in a com-
puter programming forum should be something that has to do with errors or bugs, but we
wonder how apparent this fact could be beforehand.

With a little data manipulation, it is easy to see more of the nodes with high between-
ness centrality, and compare their betweenness ranking to the frequency ranking of the
corresponding tags:

> # see betweenness ranking VS frequency ranking:
> bc.df <- data.frame(bc=bc, freq.rank = 1:length(V(gr)))
> bc.df <- bc.df[order(bc.df$bc, decreasing=TRUE),] # order in decreasing bc
> head(bc.df, 20) # show the top-20

bc freq.rank
debugging 20363.39 111
design 19011.70 198
caching 17694.07 162
exception 17655.67 142
testing 16669.95 183
error-handling 16482.48 370
dynamic 15932.37 223
api 14840.20 78
data 14178.36 261
unit-testing 14144.10 101
user-interface 14009.76 185
parsing 13927.16 105
filter 13884.12 390
web-applications 13834.88 210
optimization 13730.19 201
memory-leaks 13653.39 305
logging 13646.06 207
object 13535.99 144
web 13496.93 254
text 13487.15 230

Empirical Analysis of the Stack Overflow Tags Network 275

Thus, not only the highest betweenness node is nowhere to be seen in the 100 most
frequent tags, but also none of the 10 most frequent tags scores high in betweenness cen-
trality; we can see that, in fact, with the exception of the tag api, none of the 20 tags
with the highest betweenness centrality is in the top 100 frequency list. We can go a little
further, and check in particular how exactly the 10 most frequent tags score and rank in
betweenness centrality:

> bc.df$bc.rank <- 1:length(V(gr)) # add bc.rank field
> ind <- which(bc.df$freq.rank <= 10) # find the 10 most frequent tags
> bc.df[ind,] # display them

bc freq.rank bc.rank
mysql 7035.926 10 178
html 6295.522 9 226
jquery 5764.672 6 263
android 5645.326 5 269
javascript 4691.252 3 387
c++ 4147.752 8 440
python 3967.835 7 465
c# 3665.712 1 511
php 3539.976 4 538
java 2007.629 2 914

Hence, we can explicitly see that all 10 most frequent tags rank lower than 100 in
betweenness centrality, with the 2nd most frequent one (java) barely making it to the
top-1000 of betweenness centrality.

Interestingly enough, all the high betweenness node-tags shown above are somewhat
“general” ones, in the sense that they are not related with specific software or hardware
platforms. This makes perfect sense intuitively, and it demonstrates how the network struc-
ture can capture relations and characteristics in the data that are not easily or directly
expressed in simple aggregate measures, such as the frequency of occurrence.

As said earlier, the reader can easily confirm that, for our graph, the approximate be-
tweenness coincides with the exact one (which nevertheless would be computationally pro-
hibitive for larger graphs):

> bc.exact <- betweenness(gr)
> length(bc==bc.exact)
[1] 3711

The last statement means that the condition bc==bc.exact is true for all our 3711
nodes.

Closeness Centrality

The closeness centrality of a node is a measure of how ‘close’ a node is to all the
other nodes in the network [5, 11]. Since ours is a graph with a rather low diameter
(3), we do not expect this measure to be of particular usefulness, but we include it here
for illustrative purposes. Following a procedure completely analogous with the one al-
ready demonstrated for the betweenness centrality, but using instead the igraph function
closeness.estimate(), we arrive at very similar results:

> head(clc.df, 20)
clc freq.rank clc.rank

design 0.0001497230 198 1
error-handling 0.0001496110 370 2

276 Step C (Figure 1.40):

debugging 0.0001485884 111 3
filter 0.0001484120 390 4
caching 0.0001483900 162 5
testing 0.0001483680 183 6
documentation 0.0001483239 593 7
exception 0.0001480604 142 8
logging 0.0001478415 207 9
dynamic 0.0001478197 223 10
web 0.0001477541 254 11
optimization 0.0001476887 201 12
runtime-error 0.0001474926 1021 13
parameters 0.0001474709 339 14
memory-leaks 0.0001474491 305 15
data 0.0001474274 261 16
user-interface 0.0001473188 185 17
frameworks 0.0001473188 429 18
crash 0.0001473188 506 19
design-patterns 0.0001472971 179 20
> clc.df[ind,] # the 10 most frequent tags:

clc freq.rank clc.rank
mysql 0.0001414027 10 778
html 0.0001408848 9 915
jquery 0.0001405284 6 1031
c++ 0.0001394117 8 1488
android 0.0001385425 5 1944
python 0.0001382361 7 2128
php 0.0001372684 4 2810
javascript 0.0001366680 3 3222
c# 0.0001355381 1 3601
java 0.0001308729 2 3710

Eigenvector-based Centrality

Eigenvector-based centrality measures express the importance of a node based on the
importance of its neighbors. Since this definition is somewhat self-referential, these measures
turn out to be the solutions of some appropriately defined eigenvalue problem (hence the
name) [5, 11]. The relevant igraph function is evcent(), which has a somewhat different
interface than the betweenness() and closeness() centrality functions already used:

> eigc <- evcent(gr) # returns a list, not an array
> eigc <- eigc$vector # coerce to array
> V(gr)$name[which.max(eigc)]
[1] "javascript"

Following a similar procedure to the one already described for the betweenness, we check
the 20 nodes with the highest eigenvector centrality (notice that this measure is normalized
to lie between 0 and 1):

> head(eigc.df,20)
eigc freq.rank

javascript 1.00000000 3
jquery 0.94831551 6
html 0.72171495 9
css 0.51204736 13

Empirical Analysis of the Stack Overflow Tags Network 277

php 0.44673099 4
ajax 0.28340051 22
mysql 0.19656924 10
c# 0.18316147 1
asp.net 0.18129922 12
html5 0.13735764 39
json 0.13219053 28
java 0.10853696 2
forms 0.09822225 46
jquery-ui 0.09133711 84
sql 0.08945679 14
arrays 0.08822174 24
.net 0.08759265 16
android 0.08142784 5
regex 0.07787668 25
css3 0.07391215 83

We notice that the results are very different compared to the betweenness and closeness
centralities: javascript and jquery are pronounced as the most important nodes, and
the leaderboard is populated by a mix of the most frequent and the less so tags.

12.6 Community Detection

Community detection is both a huge topic and the subject of intense current research: a
recent (2010) survey paper in a high-caliber physics journal runs for no less than 100 pages
[15], where we read that “[t]his problem is very hard and not yet satisfactorily solved, despite
the huge effort of a large interdisciplinary community of scientists working on it over the
past few years”. The subject also goes under some alternative labels, such as clustering and
graph partitioning [11, 15], although it is advised that the former term be avoided in order
to prevent confusion with the clustering coefficient measures mentioned already [6].

Intuitively speaking, the problem of community detection is to uncover a somehow “nat-
ural” division of a network into groups of nodes, such that there are many edges within
groups and relatively few edges between groups [6]. Like the measures introduced in the
first sections of this chapter, it is a macro one, aiming at discovering and understanding
the large-scale structure of graphs and networks. Although the first algorithms for com-
munity detection and graph partitioning in computer science were proposed in the early
1970’s, recent research on the topic was greatly triggered by the publication of a seminal
paper by Girvan and Newman in 2002 [16], considered as “historically important, because
it marked the beginning of a new era in the field of community detection and opened this
topic to physicists” [15]. Their method focuses on the concept of betweenness centrality
introduced already, and it remains highly popular today. It is implemented in igraph by
the function edge.betweenness.community(), but unfortunately it is computationally
very demanding, and we will not demonstrate it here. We will focus on two other popular
algorithms instead.

Fast Greedy Algorithm

The fast greedy algorithm was proposed in 2004 by Clauset, Newman, and Moore [17];
hence, it is sometimes referred to as the CNM algorithm. It tries to optimize a modularity

278 Step C (Figure 1.40):

measure for the graph [18] by applying, as its name implies, a fast greedy approach. It is
available in igraph via the fastgreedy.community() function:

> fc <- fastgreedy.community(gr)

All the community detection functions in igraph return their results as objects of the
dedicated class communities, which provides its own special functions and operations for
this kind of objects

> length(fc) # how many communities
[1] 10
> sizes(fc)
Community sizes
1 2 3 4 5 6 7 8 9 10
32 514 625 506 976 316 521 36 183 2

We can see that the fast greedy algorithm returns 10 communities, with the sizes shown
above. Before getting for a closer inspection, we can see that most of the detected commu-
nities consist of a rather high number of nodes. To get an idea of the quality of the returned
communities, we proceed to visually inspect some of the smaller ones:

> V(gr)$name[membership(fc)==1]
[1] "actionscript-3" "flash" "flex"
[4] "actionscript" "air" "flex4"
[7] "salesforce" "adobe" "flash-builder"
[10] "flex3" "components" "swf"
[13] "actionscript-2" "textfield" "flash-cs5"
[16] "flex4.5" "apex-code" "mxml"
[19] "flash-player" "flexbuilder" "movieclip"
[22] "visualforce" "spark" "red5"
[25] "flv" "builder" "loader"
[28] "flash-cs4" "blazeds" "flashdevelop"
[31] "swfobject" "flash-cs6"

> V(gr)$name[membership(fc)==8]
[1] "excel" "vba"
[3] "excel-vba" "macros"
[5] "google-apps-script" "ms-word"
[7] "automation" "export"
[9] "google-drive-sdk" "ms-office"
[11] "google-spreadsheet" "range"
[13] "excel-formula" "excel-2007"
[15] "word" "excel-2010"
[17] "powerpoint" "cell"
[19] "google-drive" "spreadsheet"
[21] "formula" "google-docs"
[23] "copy-paste" "word-vba"
[25] "pivot-table" "google-apps"
[27] "xls" "google-docs-api"
[29] "openoffice.org" "ole"
[31] "outlook-vba" "excel-2003"
[33] "shapes" "powerpoint-vba"
[35] "google-spreadsheet-api" "vlookup"

> V(gr)$name[membership(fc)==10]
[1] "tridion" "tridion-2011"

Empirical Analysis of the Stack Overflow Tags Network 279

All three communities exposed above look meaningful: for example, community #1 seems
to be about Adobe Flash and related technologies, whereas community #8 contains mostly
tags related to “office” applications (by Microsoft, Google, and Apache). Nevertheless, we
find it difficult to imagine that the bigger communities, i.e., of size 300, 500, or even higher,
may contain such kind of coherent information that could possibly be labeled by a single
term (like “Adobe Flash”, or “office applications” for our two previous examples).

Could we possibly do better? The answer is not clear beforehand; recall from the dis-
cussion so far that, edge weights aside, our graph is densely connected, with a diameter of
only 3. It could very reasonably be the case that, given this “tightness” of our graph, we
cannot uncover any finer details regarding distinct coherent communities.

To see that this is not the case, we now turn to a powerful, state of the art algorithm,
that at the same time is not computationally prohibitive for a common desktop or laptop
computer, at least for the size of our graph.

Infomap Algorithm

The Infomap algorithm for community detection was suggested in 2008 by Rosvall and
Bergstrom [19, 20]; according to comparative tests, it “appears to be the best”, and it is “also
very fast, with a complexity which is essentially linear in the system size, so [it] can be applied
to large systems” [15]. It is available in igraph via the infomap.community() function.
Since it has a random element, we first set the random seed for exact reproducibility of the
results shown here:

> set.seed(1234) # for reproducibility
> imc <- infomap.community(gr)
> length(imc)
[1] 80
> plot(sizes(imc), xlab="Community no.", ylab="Community size")

Infomap reveals 80 communities, with the corresponding sizes as shown in Figure 12.2.
Despite the fact that here also we have some large communities detected, we have also

a rather high number of smaller ones, with sizes ranging from 2 to about 40 nodes each.
In our case, the only way for validating the communities is by “manual inspection”,

that is, by going through them and examining if the communities are meaningful. We claim
that the communities discovered by the Infomap algorithm are indeed highly meaningful;
we leave the complete set of this exercise to the reader, and we will illustrate here only some
typical cases.

Before examining the large communities, it makes sense to first examine the smaller
ones, as the possible (in)coherences will be much easier to spot. Let us begin with the
communities #17-19:

> V(gr)$name[membership(imc)==17]
[1] "facebook" "facebook-graph-api"
[3] "comments" "facebook-like"
[5] "facebook-javascript-sdk" "facebook-fql"
[7] "facebook-php-sdk" "share"
[9] "facebook-opengraph" "facebook-c#-sdk"
[11] "opengraph" "social-networking"
[13] "like" "photo"
[15] "facebook-apps" "facebook-login"
[17] "facebook-android-sdk" "facebook-ios-sdk"
[19] "access-token" "facebook-comments"
[21] "sharing" "social"

280 Step C (Figure 1.40):

FIGURE 12.2: Communities revealed by Infomap, with corresponding sizes.

[23] "facebook-page" "fbml"
[25] "facebook-oauth" "facebook-social-plugins"
[27] "facebook-access-token" "facebook-wall"

> V(gr)$name[membership(imc)==18]
[1] "r" "plot" "ggplot2"
[4] "statistics" "latex" "data.frame"
[7] "gnuplot" "time-series" "markdown"
[10] "visualization" "aggregate" "histogram"
[13] "data.table" "bar-chart" "data-visualization"
[16] "regression" "subset" "plyr"
[19] "legend" "knitr" "stata"
[22] "apply" "rstudio" "xts"
[25] "heatmap" "correlation" "shiny"
[28] "reshape" "finance" "igraph"
[31] "labels" "lattice"

> V(gr)$name[membership(imc)==19]
[1] "google-maps" "google-maps-api-3" "geolocation"
[4] "maps" "coordinates" "google-maps-markers"
[7] "openlayers" "gis" "geocoding"
[10] "kml" "polygon" "latitude-longitude"
[13] "distance" "geospatial" "google-places-api"
[16] "openstreetmap" "postgis" "google-fusion-tables"
[19] "google-maps-api-2" "spatial" "arcgis"
[22] "google-earth" "infowindow"

Community #18 could very easily be labeled as “R”: indeed, plyr, ggplot2, lattice,
xts, igraph, reshape, and data.table are R packages; rstudio is the dominant R

Empirical Analysis of the Stack Overflow Tags Network 281

IDE, while statistics, regression, visualization, and correlation are per-
haps the most typical tasks for which R is used; latex could be a possible outlier, but we
suspect that its presence is due to the increasing use of the LaTex output option, as facil-
itated by the knitr and shiny packages in a markdown framework; a similar argument
could be brought forward also for stata (questions regarding porting of Stata tasks from
and to R); apply is an R family of functions...

Similarly, it is rather straightforward to assign the labels “Facebook” and “GIS” to the
communities # 17 and #19, respectively.

How about discovering “new” knowledge from this community structure? We include an
illustrative case, as it occurred to us while writing. Community #33 clearly has to do with
install/setup tasks in a Windows environment:

> V(gr)$name[membership(imc)==33]
[1] "wiz" "installation" "installer"
[4] "windows-installer" "setup" "inno-setup"
[7] "msi" "installshield" "nsis"
[10] "uninstall" "wix3.5" "custom-action"

Having never heard of wiz, we Googled it; it proved to be “The most powerful set of
tools available to create your Windows installation experience” (see wixtoolset.org).

The list can go on; communities #28 and #35 are devoted to “big data” and “machine
learning” respectively, with virtually no outliers at all:

> V(gr)$name[membership(imc)==28]
[1] "hadoop" "mapreduce" "cassandra" "hive" "hbase"
[6] "apache-pig" "hdfs" "bigdata" "thrift" "piglatin"
[11] "cloudera" "zookeeper"

> V(gr)$name[membership(imc)==35]
[1] "machine-learning" "nlp"
[3] "artificial-intelligence" "neural-network"
[5] "classification" "cluster-analysis"
[7] "data-mining" "weka"
[9] "scikit-learn" "svm"
[11] "mahout" "libsvm"
[13] "k-means"

We encourage the reader to google possible unknown terms (mahout, perhaps?), in
order to confirm that they are indeed relevant with the other members of their respective
community.

What about our very small communities? Let us try communities #65 and #69:

> V(gr)$name[membership(imc)==65]
[1] "sip" "asterisk" "voip" "skype"

> V(gr)$name[membership(imc)==69]
[1] "neo4j" "cypher"

In community #65, sip stands for the Session Initiation Protocol (SIP) in voip net-
works (of which skype is the most popular example), while asterisk is “an open-source
telephony switching and private branch exchange service” (see Asterisk.org). Regarding com-
munity #69, neo4j is perhaps the most widely used graph database, and cypher is its
dedicated query language [21].

As expected, the situation is not so clear-cut with the larger communities; nevertheless,
even in those cases, there is certainly some nontrivial coherence in the communities —

282 Step C (Figure 1.40):

for example, there are different and distinct communities for iOS (#6) and Android (#7);
almost each and every one of them are associated with a major programming language or
framework. We can easily take a compact glimpse at the first 4 node tags of each of the
first 10 communities with the following for loop:

for (i in 1:10) {
print(V(gr)$name[membership(imc)==i][1:4])

}

[1] "c++" "c" "arrays" "linux"
[1] "javascript" "jquery" "html" "css"
[1] "php" "mysql" "sql" "sql-server"
[1] "c#" "asp.net" ".net" "asp.net-mvc"
[1] "java" "eclipse" "spring" "swing"
[1] "ios" "iphone" "objective-c" "xcode"
[1] "android" "sqlite" "android-layout" "listview"
[1] "python" "django" "list" "google-app-engine"
[1] "ruby-on-rails" "ruby" "ruby-on-rails-3" "activerecord"
[1] "git" "svn" "version-control" "github"

We think the reader will agree that a certain coherence is already visible from the above
list. And as we gradually move towards smaller communities, the picture becomes even
more coherent. Here is a similar glimpse of the communities #11-20:

for (i in 11:20) {
print(V(gr)$name[membership(imc)==i][1:4])

}

[1] "xml" "parsing" "xslt" "xpath"
[1] "excel" "vba" "ms-access" "excel-vba"
[1] "actionscript-3" "flash" "flex" "actionscript"
[1] "opengl" "graphics" "opengl-es" "3d"
[1] "node.js" "mongodb" "express" "websocket"
[1] "unit-testing" "testing" "selenium" "automation"
[1] "facebook" "facebook-graph-api" "comments" "facebook-like"
[1] "r" "plot" "ggplot2" "statistics"
[1] "google-maps" "google-maps-api-3" "geolocation" "maps"
[1] "unicode" "encoding" "utf-8" "character-encoding"

The specific setting of the random seed has no effect on the qualitative aspects of the
result: the reader is encouraged to perform the previous experiment with several different
random seeds, to confirm that the results are indeed robust and stable, although the exact
number of the uncovered communities may differ slightly.

12.7 Visualization

It is a common truth between graph researchers and practitioners that straightforward
visualizations for graphs with more than 100 nodes are of very little use, and when we move
to even a few thousand nodes, as with our reduced graph, visualization ceases to have any
meaningful value [11]. Nevertheless, there are still useful and meaningful ways to visually
explore such graphs. Two common approaches are [11]:

Empirical Analysis of the Stack Overflow Tags Network 283

� To “coarsen” the graph, by merging several nodes together, possibly exploiting the
results of an already existing graph partitioning (macro level)

� To highlight the structure local to one or more given nodes, resulting in the so called
egocentric visualizations, commonly used in social networks analysis (micro level)

We are now going to demonstrate both these approaches with our graph.

Visualizing the Communities Graph

For the first approach, we are going to further exploit here the partitioning into com-
munities provided by the Infomap algorithm from the previous Section, effectively resulting
in a dimensionality reduction for our graph, in order to produce a useful visualization. As
we will see, igraph provides several convenient functions for such purposes. We demon-
strate first the use of the contract.vertices() function, which will merge the nodes
according to the community to which they belong:

> # first, add "community" attribute to each node
> gr <- set.vertex.attribute(gr, "community",
+ value = imc$membership)
> grc <- contract.vertices(gr, V(gr)$community)
> grc <- remove.vertex.attribute(grc, "name")
> for (i in 1:length(V(grc))) {
+ grc <- set.vertex.attribute(grc, "name", index=i,
+ V(gr)$name[membership(imc)==i][1])
+ }
> grc <- set.graph.attribute(grc, "name",
+ value = "Contracted (communities) graph")
> summary(grc)
IGRAPH UNW- 80 1033957 -- Contracted (communities) graph
attr: name (g/c), name (v/c), weight (e/n)

The for loop aims to give to each node in our contracted (communities) graph the name
of the first member of the respective community (usually the community “label”), which
will be subsequently used for the graph visualization. From the summary, we can see that
we now have only 80 nodes (recall from the previous Section that this is the number of the
communities uncovered by the Infomap algorithm), but we still carry all the 1 million edges
from the gr graph. That is because, as its name may imply, the contract.vertices()
function does not affect the edges of the graph. We can further simplify the contracted
graph by merging also the edges, summing up the corresponding weights, utilizing the
simplify() function. This is an important point for visualizing, as one can discover by
trying to plot the graph as it is so far, with more than 1 million edges.

> grc <- simplify(grc, edge.attr.comb = "sum") # sum edge weights
> grc <- set.graph.attribute(grc, "name",
+ value = "Contracted & simplified (communities) graph")
> summary(grc)
IGRAPH UNW- 80 2391 -- Contracted & simplified (communities) graph
attr: name (g/c), name (v/c), weight (e/n)

Thus, we have ended up with a rather simple graph of 80 vertices and only 2391 edges,
which should not be hard to visualize. We invoke the tkplot() command (the R package
tcltk needs to be installed, but once installed igraph will load it automatically). The
results are shown in Figure 12.3 (for best results, maximize the screen and choose some
layout other than “Random” or “Circle” from the figure menu).

284 Step C (Figure 1.40):

> tkplot(grc)
Loading required package: tcltk
[1] 1

Although our communities graph is still very dense, we can visually distinguish the
central nodes from the peripheral ones, and the visualization is in line with what we might
expect: nodes representing highly used tools, environments, and tasks are positioned in
the central bulk, while nodes representing less widely used tools are pushed towards the
graph periphery. We notice that the visualization provided by the tkplot() function is
interactive, for example, one can move and highlight nodes and edges or change their display
properties etc.

We now turn to the second approach mentioned in the beginning of this Section, i.e., the
so-called egocentric visualizations focused on individual nodes.

Egocentric Visualizations

We can use egocentric visualizations in order to focus closer on our uncovered commu-
nities, keeping in mind the informal visualization rule of thumb mentioned before, i.e., that
we should try to keep the number of our visualized nodes under about 100. The following
code produces the subgraph of the “R” community (#18) discussed already:

> k.name <- "r" # the name of the node of which the community we want to examine
> k.community <- imc$membership[which(V(gr)$name==k.name)]
> k.community.graph <- induced.subgraph(gr, (V(gr)$community==k.community))
> k.community.graph$name <- paste(k.name, "community graph")
> k.community.graph
IGRAPH UNW- 32 311 -- r community graph
+ attr: name (g/c), name (v/c), community (v/n), weight (e/n)

As expected, we end up with a 32-node graph, which should not be hard to visualize.
Although not clearly documented in the igraph package manual, it turns out that we can
indeed use an edge.width argument in the tkplot() function, in order to visualize the
graph edges proportionally to their weight. Experimenting with the corresponding coefficient
(invoking the edge weight as-is produces a graph completely “shadowed” by the edges), we
get:

> tkplot(k.community.graph, edge.width=0.05*E(k.community.graph)$weight)

with the results shown in Figure 12.4.
From Figure 12.4, we can immediately conclude that the vast majority of R-related

questions in our data have to do with plotting (and the ggplot2 package in particular),
as well as with the specificities of the data.frame structure. Also of notice is the rather
strong presence of the relatively new data.table package.

We can go a step further, and remove the r node itself from the plot; that way we expect
the edge width visualization to be less dominated by the presence of the “central” node (r
in our case), and possibly uncover finer details regarding the structure of the particular
community. To do that, we only need to modify the induced.subgraph() line in the
previous code as follows:

> k.community.graph <- induced.subgraph(gr,
+ (V(gr)$community==k.community & V(gr)$name != k.name))
> tkplot(k.community.graph, edge.width=0.05*E(k.community.graph)$weight)

Empirical Analysis of the Stack Overflow Tags Network 285

The results are shown in Figure 12.5. We can confirm, for example, that the presence
of latex in the “R” community is indeed not spurious, as the subject node is strongly
connected with both knitr and markdown, although our initial speculation for its relation
also to shiny turns out to be incorrect.

We can easily extend the above rationale in order to examine closer the relationship
between two or more communities, as long as we limit the investigation to relatively small
communities (remember our 100-node max rule of thumb for visualizations). Say we would
like to see how the “Big Data” and “Machine Learning” communities are connected, ex-
cluding these two terms themselves:

> k.names <- c("bigdata", "machine-learning")
> k.communities <- imc$membership[which(V(gr)$name %in% k.names)]
> k.communities.graph <- induced.subgraph(gr,
+ (V(gr)$community %in% k.communities & !(V(gr)$name %in% k.names)))
> tkplot(k.communities.graph, edge.width=0.05*E(k.communities.graph)$weight)

The results in Figure 12.6 show that, apart from the mildly strong connections of
mahout with both cluster-analysis and k-means, the two communities are prac-
tically strangers.

12.8 Discussion

We have provided a brief demonstration of how graph and network approaches and tools
can be applied for the analysis of semi-structured text in the form of tags. In summary, the
steps we have undertaken in the present chapter are as follows:

� Starting from a raw XML file of about 26 GB in size, we parsed the data and built a
graph structure of about 2.7 million edges for the co-occurrences of all 36,942 tags.

� We made an informed reduction of our data, in order to end up with a graph that
can be feasibly analyzed using only commodity hardware; in doing so, we retained
90% of our 21 million tag occurrences while ending up with a much more manageable
reduced graph of 3711 nodes and about 1 million edges.

� Despite the fact that the relevant metrics (diameter = 3, average path length =
1.85) suggested a very dense and tightly packed structure for our reduced graph, we
successfully employed the state of the art Infomap algorithm for community detection,
in order to uncover 80 distinct communities that, upon close inspection, look indeed
meaningful and coherent.

� Utilizing the detected communities in what stands effectively as a dimensionality
reduction operation on our reduced graph, we managed to end up with a coarsened
graph of only 80 nodes and about 2,500 edges, which could subsequently be visualized
and used for further exploratory data analysis.

� Finally, we exploited further the uncovered community structure of our graph, in order
to demonstrate how further micro-analysis in the neighborhood of selected nodes is
possible and potentially insightful.

There are certainly different choices than can be made in several key points of our analysis;
for example, we could have pruned our initial graph not only according to the frequency of

286 Step C (Figure 1.40):

FIGURE 12.3: Visualization of our communities graph.

Empirical Analysis of the Stack Overflow Tags Network 287

FIGURE 12.4: Visualization of the “R” community.

288 Step C (Figure 1.40):

FIGURE 12.5: The “R” community, with the r node itself removed.

Empirical Analysis of the Stack Overflow Tags Network 289

FIGURE 12.6: The “Big Data” and “Machine Learning” communities (excluding these
terms themselves).

290 Step C (Figure 1.40):

the corresponding tags, but also according to the edge weights (which are also based on a
frequency measure). That way, we would have ended with a more clustered and less densely
connected graph, with a higher enough diameter and average path length. We chose not to
do so mainly in order to fully demonstrate the capabilities of the Infomap algorithm even
in such a dense graph, since the community detection is definitely easier for a graph that
possesses already some clustering on its own. With the step-by-step instructions and code
provided, the reader can easily explore this direction by herself.

We hope that we have presented a convincing case regarding the possible merits of the
graph representation, whenever appropriate, and of the handy tools provided by the R
language and the igraph library. Given the increasing presence of such representations in
modern data analysis, we certainly consider that a basic familiarity with the relevant tools
and concepts is a must-have skill for the practitioner.

12.9 Appendix: Data Acquisition & Parsing

Here we describe how to obtain the original data and how to parse them, in order to end
up with the two R workspace files, tag freq.RData and adj matrix.RData, which are
necessary for the analysis described in the chapter’s main body.

Data Acquisition

The whole Stack Exchange dump is available from the Internet Archive6 in 7z format.
The files necessary for our analysis are:

� stackoverflow.com-Posts.7z (about 5 GB, which contains the 26 GB uncom-
pressed file Posts.xml for Stack Overflow)

� stackoverflow.com-Tags.7z (contains the Tags.xml file, with the tags and
their frequencies)

� readme.txt (with various information useful for parsing the data)

Parsing the Tag List & Frequencies

Nowadays, R offers extensive functionality for working with XML files [22], including
the XML package. After a quick inspection of the XML structure in Tags.xml, it is almost
trivial to parse the file and get the individual tag names with their corresponding frequencies
(notice that the Tags.xml file needs to be in the current R working directory, and the XML
package needs to be installed):

> library(XML)
> f <- ’Tags.xml’
> doc <- xmlParse(f)
> tag <- xpathSApply(doc, ’//row’, xpathSApply, ’@TagName’)
> freq <- as.integer(xpathSApply(doc, ’//row’, xpathSApply, ’@Count’))

Subsequently, we just combine the variables tag and freq in a data frame, we sort it
in decreasing frequency order, and we save the resulting data frame in an R workspace file:

6https://archive.org/details/stackexchange.

Empirical Analysis of the Stack Overflow Tags Network 291

> tag_freq <- data.frame(tag, freq,
+ stringsAsFactors=FALSE, row.names = NULL)

> # sort in descending frequency:
> tag_freq <- tag_freq[order(tag_freq$freq, decreasing=TRUE),]
> # save in R workspace file:
> save(tag_freq, file=’tag_freq.RData’)

File tag freq.RData should now be in R’s current working directory.

Parsing the Tag Co-occurences

In order to parse the tag co-occurrences present in the file Posts.xml, we need to
download and install BaseX7, a free open-source XML database. Installation is straightfor-
ward, and so is the creation of a new database from Posts.xml (although it can take a
while); the resulting database is about 19 GB in size.

Posts.xml contains all the information about posts, including the answers. From
the provided readme file, we can see that PostTypeID=1 refers to questions, while
PostTypeID=2 refers to answers. Since tags are included only in the questions, we are
not interested in the latter. After some experimenting in order to arrive to the desired out-
put format (one line of tags per post, with proper separation), we end up with the following
simple query (file get tags.xqy):

for $x in //row[@PostTypeId="1"]
return ($x/@Tags/string(),’
’)

Pasting the above code to the BaseX query window (double-clicking the provided script
file also opens the query to a new instance of the BaseX GUI) and running it, we get a sample
of the desired output displayed in the relevant window of the BaseX GUI. Although the
report window indicates that only 250,000 hits are returned, saving the output results indeed
to a text file with the tag co-occurrences of all 7,214,697 posts included in Posts.xml.

Building the Adjacency Matrix

Once we have the tag co-occurrences in a text file, we can proceed to build the graph
adjacency matrix. It is not exactly a straightforward job, and we will not describe it here in
detail - interested readers can always consult the provided script parse posts.R. Here we
highlight some challenges that needed to be addressed, using them also as a demonstration
of good programming approaches in R.

In theory, with enough memory available (at least 8 GB), it is possible to load the
whole post tags.txt file produced in the previous step, and parse it to directly build the
(sparse) graph adjacency matrix G; unfortunately, it turns out that in practice one encoun-
ters the following problem: the sparse matrix G, as it gets populated, it gets increasingly
“heavier” for incremental updates, leading to unacceptably high execution times, even in
machines with powerful processors and lots of memory.

The solution we applied to overcome this issue was twofold: first, we read the
post tags.txt file via a file connection, taking in only a bunch of rows at a time in
an external while loop; second, in each loop iteration, we initialized an all-zeros tempo-
rary co-location matrix G temp, which was the one being incrementally updated, and was
added to the adjacency matrix G only at the end of each loop iteration. This approach
speeded up things significantly, since G temp never grew up to sizes that slowed down its

7http://basex.org/.

292 Step C (Figure 1.40):

incremental updates, while the matrix addition of G and G temp proved to be of practically
no computational cost.

In our setting, it turned out that a value of 1000 rows per iteration was optimal, leading
to 7215 while loop iterations; users with slower hard discs may wish to experiment with
these settings, since there is a disk read operation in each loop iteration. The resulting
solution also has the merit that it is usable to machines with low memory, since the number
of rows read at each loop iteration can be as low as desired if the value of 1000 we used
turns out to be prohibitive with the memory available.

Been forced to use an external while loop for the reasons just mentioned, we aimed to
completely avoid any for loops in the parsing procedure, since they are notoriously slow in
R (see “The Dreaded for Loop” in [23]). We thus made extensive use of the lapply family
of R functions. Novice R users usually find lapply and its relatives rather hard to master
initially, but once comprehended, they provide an excellent set of tools for writing efficient
R code.

Utilization of the lapply functions is also important for one more reason, leading
naturally the discussion towards the third ingredient we used for speeding up our code:
parallelization, which is rather trivial nowadays in R, even in Windows systems (notice
that the parallel package is now included by default in any R distribution). Indeed,
incorporating parallelization in a multicore machine is almost as easy as the following code
snippet indicates:

library(parallel)
load("tag_freq.RData")
initialize parallelization:
num_cores <- 4
cl <- makeCluster(num_cores)
clusterExport(cl, varlist="tag_freq")

Now, if we have already put the effort to use lapply functions in our code instead of
for loops, converting them in order to effectively use the existing parallelizatiuon backend
is trivial: just compare the single-threaded version shown below, where we build a temporary
variable by applying our function getTags to the raw file input doc

temp <- apply(as.matrix(doc), 1, getTags)

to its parallel version

temp <- parApply(cl, as.matrix(doc), 1, getTags)

On the contrary, and despite the functionality available in the foreach package, par-
allelizing for loops is by no means that easy and straightforward.

Bibliography

[1] A.-L. Barabási. Network Science. 2014. http://barabasilab.neu.edu/
networksciencebook/.

[2] D.J. Watts and S.H. Strogatz. Collective dynamics of ”small-world” networks. Nature,
393(6684):440–442, 1998.

Empirical Analysis of the Stack Overflow Tags Network 293

[3] A.-L. Barabási and Réka A. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[4] Easley D. and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly
Connected World. Cambridge University Press, New York, NY, 2010.

[5] M.O. Jackson. Social and Economic Networks. Princeton University Press, Princeton,
NJ, 2008.

[6] M. Newman. Networks: An Introduction. Oxford University Press, Inc., New York,
NY, 2010.

[7] E.D. Kolaczyk. Statistical Analysis of Network Data: Methods and Models. Springer,
2009.

[8] D.J. Watts. Six Degrees: The Science of a Connected Age. W.W. Norton & Company,
2004.

[9] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria, 2015.

[10] G. Csárdi and T. Nepusz. The igraph software package for complex network research.
InterJournal, Complex Systems:1695, 2006.

[11] E.D. Kolaczyk and G. Csárdi. Statistical Analysis of Network Data with R. Springer,
2014.

[12] D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Methods,
2014. R package version 1.1-4.

[13] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. The architecture of
complex weighted networks. Proceedings of the National Academy of Sciences of the
USA, 101(11):3747–3752, 2004.

[14] L.C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
40(1):3–415, 1977.

[15] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, 2010.

[16] M. Girvan and M.E.J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences of the USA, 99(12):7821–7826, 2002.

[17] A. Clauset, M.E.J. Newman, and C. Moore. Finding community structure in very large
networks. Physical Review E, 70:066111, 2004.

[18] M.E.J. Newman and M. Girvan. Finding and evaluating community structure in net-
works. Physical Review E, 69(2):026113, 2004.

[19] M. Rosvall and C.T. Bergstrom. Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences of the USA,
105(4):1118–1123, 2008.

[20] M. Rosvall, D. Axelsson, and C.T. Bergstrom. The map equation. The European
Physical Journal Special Topics, 178(1):13–23, 2009.

[21] I. Robinson, J. Webber, and E. Eifrem. Graph Databases. O’Reilly Media, Inc., 2013.

294 Step C (Figure 1.40):

[22] D. Nolan and D.T. Lang. XML and Web Technologies for Data Sciences with R.
Springer, 2014.

[23] Norman Matloff. The Art of R Programming. No Starch Press, 2011.

